Welcome to Chem 263
Materials Chemistry

http://chem.ps.uci.edu/~lawm/chem263.html

An introductory graduate level course in materials chemistry for students interested in the structure,
preparation, characterization, and properties of crystalline inorganic solids in bulk, thin film, and
nanoscale form. Emphasis is on a chemistry approach to periodic solids, beginning with a survey of
descriptive crystal chemistry, bonding, and structure-property relationships. Students will learn
common preparation methods, the characterization of solids by diffraction, and classical and
guantum models of electronic structure, with a particular focus on the properties and applications
of semiconductors.



Chemistry 263
Materials Chemistry

Lecture: MWF 11-11:50 am @ PSCB 240

Instructor: Professor Matt Law, 2127 NS 11, lawm@uci.edu
Office Hour: Tu 1:30-2:30 pm, and by appointment

TA: Nick Drago, 2138 NS |1, dragon@uci.edu
Discussion Section: Th 12:30-1:20 pm @ PSCB 240
Office Hour: M 3-4 pm, and by appointment

Text: West: Solid State Chemistry and its Apps, 2"d Edition
(purchase from UCI bookstore or online)

lecture slides and other readings available on website:
http://chem.ps.uci.edu/~lawm/chem263.html



Main Texts
West: Solid State Chemistry & Its Applications, 2nd. Ed. (Wiley 2014)*
Ashcroft and Mermin: Solid State Physics (Cengage 2016)*
Gersten/Smith: The Physics and Chemistry of Materials (Wiley 2001)*
Hoffmann: Solids and Surfaces (VCH 1989)

Sze: Physics of Semiconductor Devices, 39 Ed. (Wiley 2007)*
Kittel: Introduction to Solid State Physics (Wiley 2004)
Burdett: Chemical Bonding in Solids (Oxford 1995)
Fahlman: Materials Chemistry (Springer 2011)

Cheetham and Day: Solid State Chemistry: Techniques (Oxford 1987)
Cheetham and Day: Solid State Chemistry: Compounds (Oxford 1992)
Cox: The Electronic Structure and Chemistry of Solids (Oxford 1987)
Wells: Structural Inorganic Chemistry (Clarendon Press 2012)
Wold and Dwight: Solid State Chemistry (Chapman Hall 1993)

* = recommended for purchase through your favorite bookshop



Grading:

Problem Sets (4) 50%
Midterm Exam 25%
Term Paper 25%

General Areas Covered:

Structure and structural determination of crystalline solids
Chemical bonding in solids

Structure-property relationships

X-ray and electron diffraction

Synthesis methods

Phase equilibria

Electronic band structure

Semiconductors

Nanomaterials



SYLLABUS

Week Topic(s) Assignment
1 real space lattices & crystals
2 descriptive crystal chemistry
3 descriptive crystal chemistry
4 diffraction and the reciprocal lattice problem set 1 (Jan 27)
5 diffraction and the reciprocal lattice
6 synthesis problem set 2 (Feb 12)
7 phase diagrams midterm exam (Feb 19)
8 phase diagrams/free electron model
9 band theory problem set 3 (Mar 2)
10 band theory/semiconductors

problem set 4 (Mar 16)

11 finals week term paper and

presentations (Fri, Mar 20)

campus holidays (no class): Mon, Jan 20 (MLK Day)
Mon, Feb 17 (Presidents’ Day)




Term Paper

Choose a contemporary materials topic that interests you. For
example:

 Hybrid Perovskites * Synthetic Biomaterials
» Metamaterials * Infrared Photodetectors
« Multiferroics  Conducting Polymers
 Graphene / 2D Materials * Inorganic Solar Cells

* Photonic Crystals * Plasmonics

* Amorphous Metals * High x Dielectrics

* Colossal Magnetoresistance  « Quantum Dots

In >10 pages of double-spaced text (+ figures and references):

1) Quantitatively explain the basic principles/background

2) Summarize the state-of-the-art in synthesis, properties, and apps

3) Identify a key challenge facing the field and propose an original
solution to this challenge



CrystalMaker Software

Important visualization/measurement tool for crystals/molecules
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Structure Type: Crystal
Chemical Formula: Si
Spacegroup: A1
(Allows Chirality:
Polar)

Crystal System: Triclinic
a=b=c: 95.7500A
a=B=y: 81.000°

Asymmetric Unit: 2 sites
Unit Cell: 2 sites per unit cell
Site Density: 0.0000 sites/A®
Visible Atoms: 9
Cell Volume: 848488.306 A®
Density: 0.0001 g/cm®




CLASSIFICATIONS OF SOLID MATERIALS
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QUEST FOR THE IDEAL MATERIAL

Synthesis — composition + structure — properties
— applications of solid materials

Inorganic, organic, biological

“ Experimentalist: Make/characterize/measure/remake

¢ Theoretician: predict structure/composition with
particular properties (goal is “materials by design”)

Characterization Techniques:

Organic/molecular: NMR, IR, crystallography

Solid state: A to Z: X-ray/electron scattering,
microscopy, spectroscopy, scanning probes,
physical property characterization,
optical/electrical/magnetic properties, others



MATERIALS GENOME INITIATIVE (MGI)

government initiative to discover and commercialize new materials

at least twice as fast as done today, at a fraction of the cost

e massive computing power for materials modeling

» advanced, rapid experimental characterization tools

* big data

Discove ry /;» Deployment*
1 N 2 L 3 B 4 L 5 L 6 L 7 7
Development Property Systems Certification Manufacturing
Optimization Design and
Integration * Includes Sustainment and Recovery

Figure 1: Materials development continuum I
Number of
New Material
to Market

Figure 2: Initiative acceleration ol

http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf




Superconductors

1911, Kamerlingh-Onnes experiments on liquid He (a few ml)

Hg resistance: 0.08 ohm @ 5 K to 0.000003 ohm @ 4.2 K

1986, J. G. Bednorz, K. H. Muller (IBM)
La-Ba-Cu-O

Oxide: T,=35K

1987 Nobel prize in Physics

Y-Ba-Cu-O (YBCO): T, = 92 K
best-to-date: T, = 138 K

Cu-O chains

2008: La; ,Sm O, F,FeAs T, =50K
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Conducting Polymers

2000 Alan Heeqger,
Alan G. MacDiarmid,

Hideki Shirakawa

Nobel Prize in Chemistry

— organic light-emitting diodes (OLED)
— organic field-effect transistors (OFET)
— organic photovoltaics (OPV)

A
4

Vorume 39, Nusser 17 PHYSICAL REVIEW LETTERS 24 OcTonrm 1977

Meials, edited by D, H. Douglass (Plenum, New York
and Londom, 1976), and by C, 3. Varma and R, C.
Dynes, ibid,

e have chosen 0.5 eV somewhat arbitrarily Lo de-

fine 11,7, It is the energy near the FU8., seattering

within which leads to over 907 of most of the anomalies,
iy, Kohn, Phys, Rev, Lett, 2, 393 (1950); A W,

Overhauser, Phys, Rev, Lett. £, 415 (1960,

Electrical Conductivity in Doped Polyacetylene

C. K. Chiang, C. R. Fincher, Jr., Y. W, Park, and A, J, Heeger
Depariment of Physics and Labovatory for Reseavch on the Structuve of Matter, Uninersily of Peansylvania,
Fhiladelphia, Pennsylvania 18104

and

H. Shirakawa,'”" E, J, Louis, 8. C. Gau, and Alan G, MacDiarmid
Depayiment of Chemistvy and Labovatory for Researveh on the Stvucture of Malter, University of Pennsvivania,
Philadelphin, Pemnsylvanig 19704
[Received 23 June 1977)

Doped polyacetylene forms a new class of conducting polymers in which the electrical
conductivity ean be systematieally and continuously varled over a range of eleven orders
of magnitude, Transport studies and far-infrared transmission measurements imply a
metal-to-insulator transition at dopant concentrations near 1%.

We find that films of the semiconducting poly-
mer, polyacetylene, show a dramatic inerease
in electrical conductivity when doped with eon-
trolled amounts of the halogens chlorine, bomine,
or iodine, and with arsenic pentafluoride (AsF,).
The concentration dependence in combination with
far-infrared transmission data suggests the oe-
currence of A metal-insulator transition as a
function of dopant concentration,

Polyacetylene is one of the simplest linear con-
jugated polymers with a single-chaln structure
as shown in Fig. 1. Each carbon is o bonded to
one hydrogen and two neighboring earbon atoms
consisient with sp! hybridization. The r electrons
are therefore available to delocalize into a band.
In the idealized situation of a uniform chain, the
resulting conduction band would give rise to me-
tallic behavior. However, such a system is un-
stable with respect to bond alternation, which
causes the formation of an energy gap in the elec-
tronic spectrum. Studies of r-r* (ransitions in
short-chain polyenes show that the {requencies
do not fall as »™? as expected for a free-eleciron
picture, but appear to saturate at AE "7
~24 eV,' Bond alternation is present in the poly-
mer and would be expected to lead to semiconduct-
ing behavior. However, Ovchinnikov' has stim-
mated the bond-alternation energy gap to be too
small and attributed the observed value to Cou-
lomb correlation effects, i.e., a Hubbard gap.

In a series of studies Shirakawa and co-work-
ors®"® suceeeded in synthesizing high-quality

1088

polyerystalline films of (CH),, and developed
techniques for controlling the cis/trans content,s®
These materials are semiconductors®; the frans
isomer is the thermodynamically stable form at
room temperature,
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FIG. 1. Eleetrical conductivity of trans-(CH), as a
function of (AsF:) dogant concentration, The frans and
#in polymer structures ave shown in the inset,
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http://nobelprize.org/chemistry/laureates/2000/index.html
http://nobelprize.org/chemistry/laureates/2000/index.html
http://nobelprize.org/chemistry/laureates/2000/index.html
http://nobelprize.org/chemistry/laureates/2000/index.html

Zeolites catalysis, separation, purification, templating

e.g. Na* [(AlO,),(SI10,) ., J*16H,O  Zeolite ZSM-5



http://www.chem.ox.ac.uk/icl/heyes/structure_of_solids/Coords/SiZSM-5.cmdf
http://www.chem.ox.ac.uk/icl/heyes/structure_of_solids/Coords/SiZSM-5.cmdf

lon Signal

C60

buckyball; spherical fullerene
allotrope of carbon

1996 Nobel prize in chemistry
J.R. Heath, S.C. O'Brien, H.W. Kroto,

R.F. Curl, R.E. Smalley,
Nature 318 , 162, (1985)

Laser ionization time-of-flight

0.006 |- C&0 mass spectrum of C60 fullerene
0.004 |-
C118
0.002 |- c70
0.000 -..JJJJH

100 110 120 130 140 150 160 170 180 190 200
Time of Flight {15)

20 hexagons
12 pentagons
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PROGRESS ARTICLE
Graphene _Therise of graphene & K S g erins

Manchester, Dxford Road, Manchester M13 9PL, UK
*g-mail: geim@man.ac.uk; kestya@ graphens.omg

Single atom thick sheet of sp? C

- all the rage since 2004

2010 Nobel Prize in Physics awarded
A. Geim, K. Novoselov

RT mobilities >15,000 cm?2V-1s™1

- Extremely high freq. transistors
- Spintronics

Iy Science made possible by Scotch® tape

CHy 1,2-dimethyl-chickenwire




Materials Chemistry is the foundation for the
field of Nanoscience and technology.

emiconductor Quantum Dots
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Semiconductor guantum dots

Nanometer-sized crystals with size-dependent properties

CdTe tetrapods




Quantum Dot Basics
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Electrons in solids of reduced
dimensionality

' ,

TABLE 11.5 Properties of Electrons in Solids of Reduced Dimensionality

Dimensionality
d=0 d=1 d=2 d=3
(Quantum Dot) (Quantum Wire) (Quantum Well) (Bulk)
Y (1)? A sin k.x(sin k, y)(sin k.z) A sin k,x(sin k, y)e'*:* A(sin kyx)e' kyy+h2) Aeikxtkyy+kiz)
BAP = E(E) + W, fin? 14 n3 3 n’ B nt - n; L nk? hn? + R (k2 + k2) R (k2 + k2 + k2)
E (1\’;4— E Zk:); Ny, Smb \SL25 g2 E2 8m¢ \ L& 2% 2me 8m*L? 2m? 2m?
s, N 152, 3, 0.
(E)>e Discrete stat v2m; J 42 Mg : (2"1:)}/2 E\/2
e ; iscrete states NG e B 12 Sk 28 e et /2
k whL.L, AL, 272 \ A2
LE, ;
kr -8 T J2mnL, (3n2n)'2
Poos Po0s
w oE) = EY = const,
E E

n
[ Ppos

Gersten and Smith. The Physics
and Chemistry of Materials. 2003.




AMORPHOUS VS. CRYSTALLINE SOLIDS

Amorphous materials: No long-range structural order
Crystalline materials: Possess long-range periodicity

SiO, glass SiO, crystal (a-quartz)
trigonal crystal, space group P3,21 or P3,21

selective formation requires favourable kinetics

20



Reading: New West Ch. 1
STRUCTURE OF CRYSTALS  Reading: New iest

Old West Ch. 6

GSCh.1
Ideal Crystal: A perfect periodic array of atoms/ions/molecules.
- Represented by an infinite array of points (the lattice)
with|one or more atoms attached to each lattice point

(the basis).

Lattice: An infinite array of points in space

Crystal structure: The periodic arrangement of atoms/ions/molecules in a crystal.

It can be described by associating with each lattice point a group of atoms
called the basis (or motif)

Unit Cell: A volume of the crystal that, via pure translational repetition, generates
the entire crystal without overlaps or voids.

Primitive Cell: smallest cell, contains one lattice point, needn't reflect full symmetry

Conventional Cell: nonprimitive, bigger unit cell that reflects full crystal symmetry
21



/ 7 / . /'/?/ BASIS / MOTIF
o e

LATTICE +—
ey

L
iy —
N, Unitcells ‘ﬁ?
. ®  P: primitive
. NP: not primitive

[
Translation vectors
R=na, +n,a,

CRYSTAL STRUCTURE



White and black birds by the artist M. C. Escher

Unit Cells?




Conventional cell vs. Primitive Cell
Reflecting the symmetry
Different Basis

24



2D BRAVAIS LATTICES

5 possibhilities in 2D space

Oblique Rectangular Centered Rectangular

© 0 o o
1 2 06 o0 o o 3 o O o 3 .

o O Bravais

© o o © o o ©u® ©O (~1850)

a; a WV 7 I -
o
a, © O i o O
la #la], ¢ #90° la,| # |a], ¢ = 90° laj #[a], ¢ #90°
Hexagonal Square

Points are generated by

4 5 . .
© o o e o 9 translation operations
o o o o R — nlal + n2a2
1 ) ° * a; are primitive vectors
3, = lad, = 120° = ad. ¢ = 0 * Ny, N, are integers

25



EXAMPLE OF A NON-BRAVAIS LATTICE

The 2D honeycomb

different orientations at points P and Q — not a Bravais lattice

(it’s a hexagonal lattice with a 2-point basis) -



3D BRAVAIS LATTICES

The symmetry-unique lattices that fill space without gaps or overlaps between cells.

14 possibilities in 3D space R =n,a, +n,a, + n,a,

A]? _ A AN AN

Simple Face-centered Body-centered
cubic cubic cubic * a,b,c are lattice constants
°q; are prim ItIve vectors
A .
°4;are un It vectors
Simple Body-centered Hexagonal
tetragonal tetragonal Number Restrictions on
of Lattice Conventional Cell
‘w System Lattices Symbols Axes and Angles
Triclinic 1 P a#*b#*c
a# B #Ay
Monoclinic 2 P,C a#b#c
Simple Body-centered Base-centered Face-centered bt i
orthorhombic orthorhombic orthorhombic orthorhombic Orthorhombic 4 RGLE & #l‘; e 90°
a = = 7 =
Tetragonal 2 P 1 a=b #c¢
P e 7 a=g=y=90°
/ Cubic 3 P or s¢ a=h=c¢
ﬂ, I or bee a=f=y=H°
e e s F or fee
Simple Base-centered Triclinic Trigonal 1 R a=b=c¢
Rhombohedral Monoclinic monoclinic & i =; < 120° % 90°
(aka trigonal) Hexagonal 1 P a=b#c
a= ﬁ = §()° 27

y=120°




PRIMITIVE VECTORS

The choice of primitive vectors is not unique

Simple cubic

cubic (BCC)
lattice:

1 =5y +2-9%), a, =32 +%-79)

1 =& +9 )



PRIMITIVE VECTORS CONT.

Face-centered
cubic (FCCQC) lattice:

ND

Primitive vectors:

a; =g(y 52 2)5

3 =g(z + R),

as = S (& + 9).

Monatomic BCC and FCC lattices are very common

Table 4.2 ' Table 4.1
ELEMENTS WITH THE MONATOMIC BODY-CENTERED ELEMENTS WITH THE MONATOMIC FACE-CENTERED
CUBIC CRYSTAL STRUCTURE CUBIC CRYSTAL STRUCTURE
ELEMENT  a(A) ELEMENT  a (A) ELEMENT  a(A)  ELEMENT a(A) ELEMENT  a(A) ELEMENT  a (A)
Ba 5.02 Li 349 (78 K) Ta 3.31 Ar 5.26 (4.2K) Ir 3.54 Pt 392
Cr 2.88 Mo 3.15 Tl 3.88 Ag 4.09 Kre 572(58 K) 5-Pu 4.64
Cs 6.05 (78 K) Na 423(5K) A 3.02 Al 4.05 La 530 Rh 3.80
Fe 287 Nb 330 W 316 Au 4.08 Ne 443(42K)  Sc 4.54
K 523(5K) Rb 559 (5 K) Ca 5.58 Ni 3.52 Sr 6.08
Ce 5.16 Pb 4.95 Th 5.08
p-Co 3.55 Pd 3.89 Xe (58 K) 6.20
Cu 3.6l Pr 5.16 Yb 5.49

29



PRIMITIVE UNIT CELLS

« contains only one lattice point
* not unique
« any two primitive cells of a given lattice have equal areas/volumes

primitive* and conventional
cells for FCC and for BCC

P.C. is ¥4 the volume P.C. is %2 the volume

area or volume = 1/n
n = lattice point density

*8 lattice points shared by 8 cells = 1 point per cell



Unit cell contents
Counting the number of atoms belonging to the unit cell

Many atoms are shared between unit cells

31



UNIT CELLATOM ACCOUNTING

Atoms Shared Between: Each atom counts:
corner 8 cells 1/8

face center 2 cells 1/2

body center 1 cell 1

edge center 4 cells 1/4

Eﬁﬁ;

Simple Body-centered Base-centered Face-centered
orthorhombic orthorhombic orthorhombic orthorhombic
8x1/8=1 8x18+2x1/2=2

8x1/8+1x1=2 8x1/8+4x1/2=4

32



Consider
sodium chloride:
rock salt
(not Bravais)

Clat corners: (8 x1/8) =1 Cl at face centres (6 x 1/2) =3
Na at edge centers (12 x 1/4) =3 Na at body centre = 1

Unit cell contents are 4(Na*Cl")

33



WIGNER-SEITZ PRIMITIVE CELL

Primitive cell with the full symmetry of the Bravais lattice

* contains one lattice point at its center + full symmetry

To construct:

1) pick a lattice point

2) draw lines to all neighboring lattice points
3) draw perpendicularly bisecting planes

Wigner

® (laureate)
/ L\
FCC: BCC:
a rhombic dodecahedron a truncated octahedron

\N |/ : <
M
o . / %
enclosed region is W-S cell TN " Q}

for 2D hexagonal lattice Rg¥




CONVENTIONAL UNIT CELLS

FCC lattice

« trigonal primitive cell

« 4-fold larger cubic conventional cell Two ways to fill space

translate primitive cell:

Rprim = 18y + Ny, + N3,

translate conventional cell:

R

_ A A
cony = N;@X + n,ay + n,az

Primitive vectors:

a = 5(3 +2), a, =52+ %), a = 5% + 9). )



CONVENTIONAL UNIT CELLS

FCC lattice

simple cubic lattice spanned by aX, afl, and az with a 4-point basis

a a a :

BCC lattice

simple cubic lattice spanned by aX, afl, and az with a 2-point basis

0, g(x+y+2)

36




IMPORTANT NON-BRAVAIS LATTICES

A non-Bravais crystal structure can be described as a Bravais lattice with a basis

NaCl structure

alternative descriptions

« FCC lattice with a two-point basis 0 (Cl) and (a/2)(X + ¥ + 2) (Na)
* two Interpenetrating FCC lattices offset by Y2 of a body diagonal

37




IMPORTANT NON-BRAVAIS LATTICES

diamond structure

» FCC lattice with a two-point basis 0 and (a/4)(x +y + %)
* two Interpenetrating FCC lattices offset by ¥4 of a body diagonal

38



IMPORTANT NON-BRAVAIS LATTICES

zincblende (ZnS) structure

diamond zincblende

« FCC lattice with a two-point basis 0 (Zn) and (a/4)(X + § + 2) (S)
* two Interpenetrating FCC lattices with different atoms, offset by % of a
body diagonal

39



IMPORTANT NON-BRAVAIS LATTICES

hexaqgonal close packed (hcp) structure

* A simple hexagonal lattice with a two-point basis, 0 and a,/3 + a,/3 + a,/2
* two interpenetrating simple hexagonal lattices offset by a,/3 + a,/3 + a,/2

40



MILLER INDICES

This lattice is divided into many different sets of rows, each with a different d-spacing

In 3D, these rows become sets of planes

41



MILLER INDICES FOR PLANES
Definition #1: inverse intercepts in the real lattice

1) Find the intercepts with the cell axes as fractions of the lattice constants a, b, ¢
2) Take the reciprocals of these numbers to give three integers, denote them (hkl)

Intercepts: 1/2, 1, 1/3
Reciprocals: 2,1, 3

Miller index: (213)

Intercepts: 1 00,1
Reciprocals: 1, 0, 1

bk & i Miller index: (101)

42



MILLER INDICES

(b) (200) " (101)

Table 1 Miller Indices and Their Represented Plane or Direction of a Crystal Surface
I?ﬁﬂizrs Description of plane or direction

(hkl)  For a plane that intercepts 1/4, 1/k, 1/] on the x-, y-, and z-axis, respectively.

(hkl)  For a plane that intercepts the negative x-axis.

{hkl}  For a full set of planes of equivalent symmetry, such as {100} for (100), (010),
(001), (100, (010), and (001 ) in cubic symmetry.

[#kl]  For a direction of a crystal such as [100] for the x-axis.

(hkl>  For a full set of equivalent directions.

(hkil)  Fora plane in a hexagonal lattice (such as wurtzite) that intercepts 1/4, 1/k, 1/,
1/l on the a;-, a,-, a;-, and z-axis, respectively (Fig. 1g).

43



MILLER INDICES FOR PLANES

44



MILLER INDICES FOR PLANES

Important points:

« Lattice planes need not coincide with a layer of atoms
* (hkl) refers to the entire set of parallel planes with the same d-spacing
* If a Miller index is zero, the plane is parallel to that axis

» Multiplying or dividing (hkl) by a constant has no effect on the
orientation of the plane, but it does change the d-spacing

 Miller indices with four integers (hkil) are often used for hexagonal lattices

» The most common surfaces are those with low Miller indices, since
such planes have the highest concentrations of atoms (lowest energy)

face (100)

45




D-SPACINGS: Cubic Example

for Silicon (cubic witha=5.43 A): (100) d,,, =5.43 A
(200) d,p,=al2=2.72A
(111) dy, =anN3=3.144
(101) dy, =an2=3.84 A

Length of body diagonal: a+/3

a3
3

{111} d-spacing:

Length of face diagonal: a\/E

a2

{101} d-spacing: T

!
! e
‘ L nda Y

e (200) (@) (10 1)
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D-SPACINGS

d-spacing formulae for any lattice symmetry:

Cubic

Tetragonal

Orthorhombic

Hexagonal

Monoclinic

Triclinic

Fooh2 kBt 1?

d? a?

L B+ k%7 I8
—_— = +__.

2 a2 C2

¥ ol k282
Z-adEia

1 4<h’-+hk+k2) 12
_— = +_
4> 3 a? c?

1 1 (hz k*sin?f 12 2hlcosp

d* sin?p

a? b? c? ac

3= b sin’a +k2a’cPsin? p

Table 5.4 Calculated d-spacings for an or-
thorhombic cell, for a=3.0, b=4.0, c = 5.0A

hkl d(A)
001 5.00
010 4.00
011 3.12
100 3.00
101 2.57
110 2.40

111 2.16

+ I?a*b?sin®y + 2hkabc?(cos acos B — cos )

+ 2kla*bc(cos fcosy — coso)
+ 2hlab*c(cosacosy —cosf) ]

a7



CRYSTALLOGRAPHIC DIRECTIONS

[hkl] indicates a direction in a crystal, defined in the normal way from the origin

Z
|_attice Directions
Individual directions: [hkl]
[111] Set of equivalent directions: <hkl>
[201] 1010]
>——>Y
1o,
v | | _
X In cubic crystals, [hkl] is perpendicular to (hkl).

z (001) z z
a

/7
77
(111]
7/ /4
,

/‘ , l,/(om)
| e

‘Y 1100]

* (100) (110) * (111)
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INDICES for HEXAGONAL LATTICES

It is best to use four indices (hkil) to describe hexagonal lattices since
the non-orthogonal equatorial axes make (hkl) notation ambiguous

For example, (110) and (120) are equivalent planes in hex. systems,
but this Is not obvious unless the four-index notation 1s used.

] (110)=(1120)  (120)=(1210)

* Primitive cell in bold

» Conventional cell also shown
* Lattice constants: a, c

4 vectors: a;, a,, agand c

a. = -(a. + a,
5= 3+ ) _

7*. Primitive vector transformations
a, = a[-X + \3y]/2

° JAN
1= C=CZ
X 49




HEXAGONAL LATTICE PLANES

plan view of 4-axis basis

= -(a, +
8 = (a1 + ay) /Intercepts: -1,-1, 1/2,

Index: (1120) = (110)

A  for planes,h+k+1=0
* | 1S redundant and can be
omitted: (hkil) — (hkl)

A Intercepts: 1,00,-1,
Index: (1010) = (100)

there are six {100}, six {110} planes, 1100} = (1010),

1010), (1100),
and two basal planes, {0001} &1003 501103

(0110) :

O




HEXAGONAL LA

'TICE DIRECTIONS

We use [hkl] rather than [hkil]

plan view of 3-axis basis
[110] »

to specify lattice directions

3D view

‘ W

\

\

|

I
s

|

iy LD

- (1210)

[010]

51



UNIT CELL VOLUMES

general formula

(parallelepiped): Vcell = ‘aal'(baz X 033)‘

lattice specific formulae:

Cubic V=q

Tetragonal YV =g’e

Orthorhombic V = abc

Hexagonal V=( \/gazc)/2 = 0.866a°c
Monoclinic ~ V=abcsinp

Triclinic V =abc(l —cos?a —cos? B — cos?y + 2cosacos Bcosy)!/?

52



SYMMETRY OF BRAVAIS LATTICES

By definition, all 14 Bravais lattices have translational invariance
Each Bravais lattice also has point symmetry (invariance under point operations)

Notation Sj Si

07 o 0 0
Symmetry Hermann—Mauguin Schonflies 4;n= 3 ‘,Jn =2
element (crystallography) (spectroscopy)
@ & D0
( Mirror plane m 0,0y 3 - T Skt
Rotation axis n(=2,3,4,6) CAC, Cs éle) RENA e N
Point Inversion axis A(=1, 2, etc)) — | L
symmetry { Alternating axis — S(S,,S,,etc) m @o
(rotoreflection) 5 O o W& P o | ,4,
Centre of 1 i Sli Si AN
| 6" .|."va
\ symmetry o o0 0 0
Space {Glide plane n,d, a,b,c —_ o -
symmetry Screw axis A o) s 1? 2

2o
All normal crystals belong to one of 32 possible point groups based on
the combination of point symmetry elements they possess 53



POINT SYMMETRY

Table 5.2 The seven crystal systems

Crystal system Unit cell shape' Essential symmetry Space lattices
Cubic a=b=c, a==y=90° Four threefold axes P,F,1
Tetragonal a=bzFc, a=p=y=90° One fourfold axis P, I
Orthorhombic axbfc, a==y=90° Three twofold axes or mirror planes P, F, 1, AB or C)
Hexagonal a=b%c, a==90°y=120° One sixfold axis P
Trigonal (a) a=b%c, a=4=90°y=120° One threefold axis P

(b) a=b=c, a=B=y+90° One threefold axis R
Monoclinic* axb$c, a=y=90°p3%90° One twofold axis or mirror plane PG
Triclinic axb+c, aFpfF+y+90° None P

* Two settings of the monoclinic cell are used in the literature. The one given here, which is most commonly used, and the other a$ b+ ¢, a = =90°, y % 90°.
' The symbol + means not necessarily equal to. Sometimes, crystals possess pseudo-symmetry in which, say, the unit cell is geometrically cubic but does not possess
the essential symmetry elements for cubic symmetry, and the symmetry is lower, perhaps tetragonal.

 Crystals may display rotational symmetries of 1, 2, 3, 4, or 6.

(other possibilities cannot fill space without voids)

e.g.,

dead
space

(@

(b)

Fig. 5.11 (a) The impossibility of forming a close
packed array of pentagons. (b) A close packed layer of
hexagons.

54



QUASICRYSTALS

Ordered but aperiodic (“quasi-periodic”) crystals first discovered in 1982

10-fold
symmetry!

Shechtman et al. PRL 53, 1951 (1984).

Often binary or ternary intermetallic compounds
- poor conductors, very hard

Quasicrystals
are topologically
#@ similar to
Penrose tilings
(aperiodic tilings)

YMgCd I1an Fisher




POINT GROUPS

Point symmetry elements allowed in crystals: 1,2,3,4,6,1,2,3,4,6,m

Table 2.4. The 32 Crystallographic Point Groups

Crystal system (bravais lattices) Crystallographic point groups?
(molecular point groupsb)
Cubic (P, I, F) 23, m3, 432, 43m, m3m
(Ts_Th,O’Td’ Oh) _
Tetragonal (P, I) 4,4, 4/m, 422, 4mm, 42m, 4/mmm ;
(Ca. S4, Can» Da» Ca» Dag, Dap) / denotes a mirror
Orthorhombic (P, C, I, F) 22%, mm2, mmm (Dy, Coy, Dop) p|ane perpendicular to
Trigonal/Rhombohedral (P) 3..3,32, 3m; 3Im(Cs, C3j5. D35 Cays D3g) . .
Hexagonal (P) 6,6,6/m, 622, 6mm, 6m?2, 6/mmm the rotation axis
(Cé, C3n> Coh» De> Cop» D3ps Deh)
Monoclinic (P, C) 2,m,; 2Im (Cs; Cs; Cap)
Triclinic (P) 1,1(Cy, Ci)

4The H-M symbolism derived from crystal symmetry operations. For image and
movie representations of each point group, see the website: http://neon.mems.cmu.
edu/degraef/pg/index.html

PThe analogous Schoenflies symbolism derived from molecular symmetry operations.

3D representations of the 3 orthorhombic point groups:

"""5 /S-ﬂ h“S 5"" CI
e=c{ T=c cl )%( ¢
4 N,
lﬂ""'s S"’IJ 'F"'S S"ﬂ Cl
222 D, mm?2 Cay mmm D,



EXAMPLES

a=3.8240 A : . :
b = 38879 A « slight buckle eliminates 3" mirror plane

c =11.6901 A 57



CUBIC POINT SYMMETRY

Schonflies symbols

I
I
. ’a’_ Symbol Meaning
I
! n=2 Classification accordingto T 4 three- and 3 two-fold rotation axes as in a tetrahe-
- 1 rotation axes and principal dron
! mirror planes 0 4 three- and 3 four-fold rotation axes as in an octa-
) - hedron
o) ¢ : Additional symbols for h horizontal = perpendicular to the rotation axis
mirror planes v vertical = parallel to the main rotation axis
d diagonal = parallel to the main rotation axis in the

plane bisecting the 2-fold rotation axes

Fig. 5.14 Two-, three- and four-

fold axes of a cube

The five cubic point groups in 3D:

23 m3 432 43m m3m

T Th O Td Oh

60



The five cubic point groups in 3D:

ZHIPREE

43m m3m
T4 O,

diamond fcc & bec

i S



http://www.chem.ox.ac.uk/icl/heyes/structure_of_solids/Coords/ZnBlende.cmdf
http://www.chem.ox.ac.uk/icl/heyes/structure_of_solids/Coords/ZnBlende.cmdf

STEREOGRAMS

Stereograms are semi-archaic representations of point groups, useful in
crystallography and geology

Example: construct the stereogram for the 222 point group
(3 mutually perpendicular 2-fold axes)

positions generated below

start with single 2-fold axis plane of paper

position above _ 1 to page
plane of paper (i)

2nd 2_fold axis
(ii)

sphere in /
(iv) %

projection "
new position At- il ax;
wofold axis
_ generated is present in the
construction direction <—

line

point group 222 has
4 equivalent positions N

3rd 2-fold axis generates nothing new




STEREOGRAM NOTATION

Table 6.1 Point symmetry elements

Symmetry element Written symbol Graphical symbol

] None
Rotation 2 )
axes 3 A
4 S
6 @
1 None*
Inversion A=m) —
I=3+1) A
axes 4 <‘>
6 = 3/m) &
Mirror plane m R

* The inversion axis, 1, equivalent to a centre of symmetry, is represented as Oin space
groups but does not have a formal graphical representation in point groups, even
though it is present in many point groups.

" The inversion axis 2 does not have a separate graphical symbol other than that of the

Ortherhombic

/TN

mirror plane equivalent to it.
®|®
LA L

D Do LD
222\ / mm2 mmm\l;:{e

Lmm

L2m

A‘h TETRAGONAL
X

Lk /mmm

&) B, &,

TRIGONAL

AN AVAY
@ /m22

2

YD A5
6mm 2 0 < ‘

N\

HEXAGONAL

/mmm

.m3




TABLE OF POINT GROUPS

Correspondence between crystallographic and spectroscopic (“normal”)

notation: Hermann-Mauguin for crystallography

« Schonflies for spectroscopy
« 21 out of the 32 have no center of symmetry (centrosym. groups in red)

H-M Schonflies H-M Schonflies H-M Schonflies
1 C, m3 T 6mm Cev
2 C, 2/m C,, m3m 0O,

222 D, mmm D, 42m D,y

C, 4/m Cun 62m D,
3 C, 32 D, 4/mmm Dy
Cs 6/m Cen 6/mmm Dsh
23 T 432 O
1 C. 422 D,
m C, 3m Csyy

mm2 C,y 622 Dg
4 S, 43m Ty
3 Sg 4mm C.y
6 Cah 3m D4

62



SPACE SYMMETRY OPERATIONS

finite molecules have point symmetry only

crystals have point symmetry + extra operations that include translation
\ ]| }
| |

pointgroup +  space symmetry elements — space group

Screw axis Glide plane
» translation and rotation along the same axis * translation and reflection in a parallel plane
i 2,SCREW AXIS (b) )
T symbol T‘T types
@ a,b & c glides
Xy d

| n (face dia.)

@ « translate by Y/X g d (body dia.)
@ of unit cell edge ;@

C * rotate by 360°/X o |
0 E \an a glide plane with
e.q. @ ae p .
@ 6, = ¥ translation, reflection - to b axis

@ 60° rotation @

63



INTERNATIONAL SPACE GROUP SYMBOLS

All periodic crystals can be classified into one of 230 possible space groups, which
summarize their crystal system, lattice, and point and space symmetries

14 Bravais lattices + 32 crystall. point groups + space ops. — 230 space groups

The first letter in the int’| symbol refers to Bravais lattice type:

P (primitive); F (face-centered); | (body centered); A,B, or C (base centered)

The remaining characters are the H-M symbols (with space symmetry
added and ordered from most important axis to least important axes, or xyz)

quartz:  P3,21 — primitive trigonal with 3, screw axis and
2-fold rotation axis

diamond: Fd3m — FCC with glide planes along the body diags.
and 3-fold rotoinversion axes

CaTiO5;:  Pnma — primitive orthorhombic with an n-glide
plane | to x-axis, a mirror plane o to
y-axis, and an a-glide plane 1 to c axis

64



CONCEPTUAL RELATIONSHIPS

POINT AND SPACE GROUPS OF BRAVAIS LATTICES AND CRYSTAL STRUCTURES

BRAVAIS LATTICE CRYSTAL STRUCTURE
(BASIS OF SPHERICAL SYMMETRY)  (BASIS OF ARBITRARY SYMMETRY)

Number of 7 32
point groups: (““the 7 crystal systems’”) (“the 32 crystallographic point groups’)
Number of 14 230
space groups: (“the 14 Bravais lattices™) (“the 230 space groups™)
\ ) \ )
| |
groups possible when basis groups possible when basis
IS of maximum symmetry can have arbitrary symmetry

(a sphere on each lattice point)



SELECT SPACE GROUPS

23 P23, F23, 123, P23, 123
m3 Pm3, Pn3, Fm3, Fd3, Im3, Pa3, la3
Cubic (36) 432 P432, P4,32, F432, F4132, 1432, P4332, P432, 14132
43m P43m, F43m, 143m, P43n, F43c, 143d
m3m Pm3m, Pn3n, Pm3n, Pn3m, Fm3m, Fm3c, Fd3m, Fd3c, Im3m, la3d
6 P6, P61, P65, P63, P64, P63
6 P6
6/m P6/m, P63/m

Hexagonal (27) 622 P622, P6122, P6522, P6222, P6422, P6322

Bmm P6mm, P6cc, P6acm, P6Bamc
6m2 P6m2, P6¢c2, P62m, P62c
6/mmm

P&/mmm, P6/mcc, P63/mem, P62/mmc

5 Pmm2, Pmc21, Pcc2, Pma2, Pca2q, Pnc2, Pmn24, Pha2, Pna2q, Pnn2, Cmmz2,
mm

Orthorhombic Cmc2q, Cec2, Amm2Z, Aem2, Amaz2,Aeaz, Fmmz2, Fdd2, Imm2, Iba2, Ima2

(59) Pmmm, Pnnn, Pcem, Pban, Pmma, Pnna, Pmna, Pcca, Pbam, Pccn, Pbem,
Pnnm, Pmmn, Pbecn, Pbeca, Pnma, Cmem, Cmce, Cmmm, Ccem, Cmme, Ccce,
Frmmm, Fddd, Immm, Ilbam, Ibca, Imma

mimim

find the rest @ http://en.wikipedia.org/wiki/Space_group



CRYSTAL SYMMETRY SUMMARY

Crystal Crystal oint
y . vy Required symmetries of point group P
family system groups
Triclinic None 2
Monoclinic 1 twofold axis of rotation or 1 mirror plane 3
] 3 twofold axes of rotation or 1 twofold axis of
Orthorhombic ) ) 3
rotation and two mirror planes.
Tetragonal 1 fourfold axis of rotation 7
Trigonal 1 threefold axis of rotation 5
Hexagonal
Hexagonal 1 sixfold axis of rotation 7
Cubic 4 threefold axes of rotation 5
Total: 6 7 32

space bravais
groups lattices
2 1
13 2
59 4
68 2
7 1
18
1
27
36 3
230 14

Lattice
system

Triclinic
Monoclinic

Orthorhombic

Tetragonal

Rhombohedral

Hexagonal

Cubic
7

http://en.wikipedia.org/wiki/Crystal_system



